Practice A

Determine the solution(s) of the equation. Check your solution(s).

1.
$$x^2 - 7x + 10 = 0$$

2.
$$x^2 + 6x + 9 = 0$$

Solve the equation by graphing. Check your solution(s).

3.
$$x^2 + 5x = 0$$

4.
$$x^2 + 3x - 4 = 0$$

3.
$$x^2 + 5x = 0$$
 4. $x^2 + 3x - 4 = 0$ **5.** $x^2 - 8x + 16 = 0$

6.
$$x^2 + 3x + 6 = 0$$

7.
$$x^2 + 5x + 6 = 0$$

6.
$$x^2 + 3x + 6 = 0$$
 7. $x^2 + 5x + 6 = 0$ **8.** $x^2 - 4x + 4 = 0$

9. The profit y (in thousands of dollars) of selling bedroom sets can be modeled by $y = -x^2 + 8x$, where x is the number of bedroom sets sold in a day.

a. Interpret the x-intercepts of the graph of the equation.

b. How many bedroom sets must be sold in a day in order to make no profit?

Rewrite the equation in standard form. Then solve the equation by graphing. Check your solution(s) with a graphing calculator.

10.
$$x^2 = 6x - 9$$
 11. $x^2 = 3x - 5$ **12.** $x^2 = x + 12$

11.
$$x^2 = 3x - 5$$

12.
$$x^2 = x + 12$$

Solve the equation by using Method 2 from Example 3. Check your solution(s).

13.
$$x^2 = 4x - 7$$

13.
$$x^2 = 4x - 7$$
 14. $1 - 2x = -x^2$ **15.** $3x + 4 = x^2$

15.
$$3x + 4 = x^2$$

16. A baseball player throws a baseball with an upward velocity of 16 feet per second. The release point is 4 feet above the ground. The function $h = -16t^2 + 16t + 4$ gives the height h of the baseball after t seconds.

a. How long is the ball in the air if no one catches it?

b. How long does the ball remain above 4 feet?